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Experimental Section 
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Table I. Xenon Perturbation of Alkylbenzene (PhR) Fluorescence 
and f/.9-2-Heptene Isomerization" 

R* 

Methyl 

Ethvl 

lsopropyl 

ten- Butyl 

F°/F' 

1.16 

1.05 

1.06 

1.02 

F'/F 
Y1 /Y1' 
F'/F 
Y1IY1' 
F'/F 
Y1/Y1' 
F'/F 
Y1JY1' 

6 

1.28 
1.24 
1.28 
1.26 
1.13 
1.33 
1.01 
1.58 

Xe, 

12 

1.68 
1.45 
1.72 
1.50 
1.47 
1.62 
1.07 
1.99 

mL f 

16 

2.43 
1.65 
2.14 
1.61 
1.74 
1.77 
1.20 
2.71 

25 

3.09 
1.86 
2.68 
1.96 
2.38 
2.31 
1.34 
3.68 

" Symbols are defined in the text. * [Olefin] = 50 mM. [PhR]: R 
= methyl, 16.6 mM; ethyl, 16.8 mM; isopropyl, 17.4 mM; /<?rr-butyl, 
17.7 mM. ' 1 atm. 

Figure 1. Representative least-squares plots for toluene (O), isopropyl-
benzene (A), and terr-butylbenzene (D) (see Tables 1 and II). 

was monitored using a previously described spectrophotofluorometer,3 

with an Oriels Optics Corp. 254-nm mercury pen lamp source through 
a 254 nm interference filter; data were obtained using a toluene 
standard.2 Singlet lifetimes were measured on a TRW nanosecond 
fluorometer (Model 31 A) using a deuterium lamp. Photomultiplier 
(RCA 1 P28) output was fed into a modified Tektronix DlO single 
beam oscilloscope and the decay curve displayed on a Houston In-
slrument Omnigraphic 2000 x-y recorder. 

Sample Preparation and Analytical Procedure. Five Vycor tubes, 
1 3 X 145 mm, with necks having graded Vycor to Pyrex seals, were 
charged with 5 mL of cyclopentane stock solution, 50 mM in cis-2-
heptene, with sufficient alkylbenzene to provide an absorbance of 2.5 
cm-1 at 254 nm. Rigorous degassing was effected with four freeze-
pump-thaw cycles at <1 X 1O-4 Torr. Xenon was distilled into the 
tubes in a manner similar to that of Carroll and Quina.4 The xenon 
cylinder was connected to the vacuum line by a glass manifold, sections 
of which could be isolated for delivery of a graded series of volumes 
(6. 12, 16. and 25 mL, filled to 1 atm) into four of the tubes. All five 
tubes were then sealed. Relative fluorescence emission was deter­
mined, and the tubes were then suspended in a Rayonet RPR-100 
reactor by means of an MGR-100 merry-go-round apparatus and 
irradiated with a single lamp emitting light in the 2537-A region. Ir­
radiations were carried out to low (<5%) levels of olefin isomerization 
in all cases save that of /err-butylbenzene, where isomerization did 
not exceed 7%. All isomerization data were corrected for back reac­
tion. Analyses for /ran.v-2-heptene were performed using a 20 ft X 0.25 
in. ft^'-oxydipropionitrile column at 0 0C. Correction for singlet 
quenching (F0JF') was made for each alkylbenzene in a separate series 
of experiments. For each compound, two tubes were prepared con­
taining cyclopentane solutions of the substrate at the working con­
centration used in the perturbation experiment, with one of the solu­
tions 50 mM in olefin. All tubes were degassed and sealed, and the 
relative fluorescence emissions determined. The relative values of 0jsom 
(Y1/Y1') and fluorescence intensity (F'/F) were then treated as 
described.4 

Chemicals. Cyclopentane (Burdick and Jackson, "distilled in glass") 
was used as received. Ethylbenzene (MCB reagent), isopropyl benzene 
(MCB), and /m-butylbenzene (ChemSampCo) were purified by 
preparative VPC on a 10 ft X 0.25 in. column of 10% SE-30 on Gas-
Pack W followed by short path distillation. Toluene (Mallinckrodt 
reagent) and 1-phenyldecane (Aldrich) were sufficiently pure by GLC 
analysis on the above column that these reagents were distilled di­
rectly. r/.v-2-Heptene (K & K Laboratories) was purified using a 10 
ft X 0.375 in. 30% AgN03-ethylene glycol column prior to distillation. 
Analyses of the unirradiated olefin for the trans isomer were per­
formed as described below; the amount of trans isomer never exceeded 
0.21%. Xenon (Matheson research grade) was used as received. 

(ferf-Butyl-d^benzene (I). This compound was prepared by the 
method of Nightingale and co-workers5 from 2-chloro-2-methyl-
propane-^9 (Aldrich) and anhydrous ferric chloride (Fisher) in ben­
zene. The U<?/-r-butyl-̂ 9)benzene so obtained is a colorless liquid: bp 
68-69 0C (20 mm); IR (neat) 3.31, 4.52, 6.28, 6.76, 6.99, 9.51, 9.90, 
13.16,13.66, and 14.45 M; NMR (CDCl3) & 7.34; mass spectrum m/e 
(rel intensity) 143 (29). 126(12), 125 (100), 124 (13), 94 (18), 93 
(34), and 46 (14) (>99% d9). Anal. Calcd for C10H5D9: C, 83.82; H, 
3.52; D, 12.66. Found: C, 84.09; H, 3.49; D, 12.60. 

l,3-Dimethyl-2-isopropenylbenzene. 2,6-Dimethylbenzoic acid (10 
g, 66 mmol) (Aldrich) was treated with trimethylaluminum (26 mL, 
266 mmol) (Texas Alkyls) according to the method of Meisters and 
Mole.6 After 36 h at 135-150 0C, workup of the hydrolyzed reaction 
mixture afforded 7 g of a pale yellow oil. Chromatography on alumina 
(Merck) with hexane afforded 1.9 g (19%) of the crude product. Pu­
rification on a Carbowax 2OM column provided pure material: IR 
(neat) 6.09, 6.85, 6.98, 7.30, 7.35, 9.31, 11.17, and 13.08 M; NMR 
(CDCl3) 5 7.03 (3 H, s), 5.25 (1 H, m), 4.75 (I H, m), 2.23 (6 H, s), 
and 1.94 (3 H, m); mass spectrum m/e (rel intensity) 146 (82), 131 
(100). Anal. Calcd for CnH1 4 : C, 90.35: H. 9.65. Found: C, 90.28; 
H, 9.65. 

l,3-Dimethyl-2-isopropylbenzene (II). l,3-Dimethyl-2-isopropen-
ylbenzene (500 mg, 3.42 mmol) was dissolved in ethyl acetate (50 mL) 
and hydrogenated using 150 mg of 10% palladium on charcoal cata­
lyst. After filtration of the catalyst and removal of the solvent, the 
product was purified on a Carbowax 20M column to give 423 mg 
(84%); IR (neat) 6.85, 7.28, 7.39,9.46, and 13.1 U ; NMR (CDCU) 
<5 1.31 (6 H, d, ,/ = 8 Hz), 2.35 (6 H, s), 3.41 (1 H, septet, 7 = 8 Hz), 
and 6.96 (3 H, s); mass spectrum m/e (rel intensity) 148 (23), 133 
(100). Anal. Calcd for CnH16: C, 89.12; H. 10.88. Found: C, 88.94; 
H, 10.89. 

(l-Methylcyclohexyl)benzene (IV). Alkylation of benzene with 1-
methylcyclohexanol (Aldrich) in sulfuric acid was carried out by the 
method of Sidorova7 to afford IV in 31% yield as a colorless liquid, 
bp 132-135 0C (17 mm) (lit.7 136-137 0C (34 mm)). 

Results and Discussion 

The recently detailed xenon perturbation method of Carroll 
and Quina4 was used to determine 0 isc values. This method 
involves the measurement of alkylbenzene fluorescence with 
and without xenon, and the degree of sensitized olefin isom­
erization, also with and without xenon. Data, corrected for 
back reaction, are presented in Table I, wherein ( I )F 0 , F', and 
F are the relative fluorescence intensities with (a) no olefin or 
xenon, (b) olefin but no xenon, and (c) olefin plus xenon, re­
spectively; (2) Y1 and Y1 are the yields of olefin geometric 
isomer with and without xenon, respectively. The data in Table 
I, when plotted (see Figure 1) as 

provide 4>\iC as the slope; these efficiencies, when combined with 
previously measured2 singlet lifetimes, allow for a complete 
description of the photophysical properties of these compounds 
(Table II). It now becomes clear that 0 lsc is reduced, within 
this series, in like fashion to 4>u and that the previously reported 
enhanced nonradiative decay which culminates in tert-but-
ylbenzene2 is specifically the consequence of increased internal 
conversion. 

This having been demonstrated, we concerned ourselves with 
the origin of the high kK which characterizes fer?-butylben-
zene. There has been considerable discussion in the literature 
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Table II. Photophysical Properties of Some Alkylbenzenes (PhR) 

R 

Methyl 

Ethyl 
lsopropyl 
ten- Butyl 

faa 

0.14 

0.11 
0.073 
0.032 

</>isc* 

0.52 ±0 .01 
(0.51)'' 
0.44 ± 0.02 
0.34 ±0 .01 
0.086 ± 0.007 

Tf,'' 

ns 

35.2 

35.1 
24.5 
10.0 

ku 
106S"1 

4.0 

3.1 
3.1 
3.2 

^ i c i 

106S"1 

9.6 

13. 
24. 
88. 

k,x. 
106S- ' 

15. 

13. 
14. 
8.6 

" Reference 2. 6TMs work, Table I; errors are standard deviations from a least-squares treatment. ' Reference 2; we estimate the maximum 
error for these data to be ±1 ns. d Reference 4. 

of the possible involvement of toluene's a C-H vibrational 
modes in radiationless decay from the triplet state. Though 
a recent report minimizes this involvement,8 the empirical 
correlation we observed2 between fa and the number of (3 hy­
drogens led us to synthesize (rerr-butyl-d^benzene (I). The 

CD3 

C D , — C - C D , 

CHS 

CH 3 —C-CH 1 

Of 0.032 
10. 

4>fS and ]TS forperdeuterated vs. nondeuterated material are 
within experimental error and confirm that, despite the cor­
relation mentioned above, the /3 C-H stretch is not coupled 
into the So*— 5'i decay. 

We therefore considered that the a, /3 C - C bonds of the 
branched alkyl side chain in some way promote aryl internal 
conversion. When we noted that the increase in k\Q, for the 
series ethyl-, isopropyl-, and rerr-butylbenzene, mirrors a 

CH; CH3 ^ CH3 

€ H - H CH"CH;i ©>-f-CH3 
H H CH3 

progressively increasing preference for the out-of-plane con­
formations shown below,9'10 we theorized that not only might 
the a,/3 C-C bonds be involved, but that a stereoelectronic 
requirement may be present as well. To test this hypothesis, 
we synthesized compounds II and IV, and compared them with 
appropriate models (III and V, respectively); the data are 
shown below the structures. 

H 
H3C I CH 3 

CH3 

H'CYYCH' ^vJy^ 

fa 
'7, ns 

*d. 
106 s -

II 

0 .0078 
5.8 
170 

III 

0.081 
35 

(ref 4b) 

26 

IV 

0.021 
8.1 
120 

V 

0.089 
29.2 
(ref 2) 

31 

Compound II was chosen because the steric constraints of 
the 2,5-dimethyl groups should lock the isopropyl group into 
a conformation in which a C-CH3 bonds are fixed out of the 
plane of the ring.1' The consequence for ^d is indeed dramatic; 
its sixfold increase, relative to that of III, may be compared to 
the factor of 1.5 for isopropylbenzene relative to toluene. In 

fact, II has one of the shortest lived excited singlet states we 
have measured for an alkylbenzene. 

Compound IV was chosen because calculations12 indicate 
that IVa and IVb are its preferred conformations (IVa being 

^ 
IVa rvb 

of lower energy). Both IVa and IVb are estimated to be several 
kilocalories/mole lower in energy than conformers having the 
methyl in the plane of the benzene ring. Again, the fourfold 
increase in kd of IV relative to V may be compared with the 
factor of 2.5 for rert-butylbenzene relative to isopropylbenzene. 
We believe that the data for II and IV provide additional ev­
idence for the importance of a, /3 C-C bonds in the nonradia­
tive decay process, and support the hypothesis that these bonds 
are most effective when out of the plane of the ring.'3 

There are indications that the effect of a ?er;-butyl group 
on nonradiative decay may be fairly general. Thus, the singlet 
lifetime of Via is a factor of 10 less than that of VIb14 (p-xylene 

CH3 O 

X— (Cj)—C—CH 2—C—CH 3 

CH3 

Via, X = 
b, X = 

f-Bu 
H 

and toluene have comparable ' rs) .2 Even in a more complex 
molecule such as indigo, insertion of tert-buXy\ groups has been 
observed to lower fa and 1T.15 The detailed mechanism by 
which C-C bonds accelerate aryl So •«— Si decay remains to be 
elucidated.16 
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Abstract: The detailed molecular structure of a pen'-di-ferr-butylnaphthalene has been determined by x-ray crystallography 
and molecular mechanics calculation. Both methods describe a highly distorted nonplanar framework, a result which serves 
to confirm previous structural assumptions that were based on other spectroscopic techniques. 

Highly congested molecules always present challenges 
to chemists. There is the synthesists' problem of trying to 
prepare such molecules and there is the theoreticians' goal of 
trying to predict or interpret why the structures and properties 
come out the way they do. Both the 1,8-dimethylnaphthalene 
1 and the o-di-?ert-butylbenzene system 2 have been subjects 

1 2 
of molecular mechanics calculations and x-ray crystallogra­
phy.2'3 In both molecules, the methyl groups are closer than 
permitted by the sum of van der Waals radii and hence the 
molecules are strained. In both systems, the adjustment to the 
strain was observed experimentally as an outward in-plane 
bending of substituent groups. The major adjustment of the 
aromatic ring was bond angle deformation, but there was no 
significant deviation from planarity. When the methyl groups 
of 1,8-dimethylnaphthalene are replaced with tert-buty\ 
groups, the congestion is much more severe. The successful 
synthesis of such compounds4 was an invitation to molecular 
mechanics methodology31*5 to determine the structure of the 
system, particularly since the x-ray crystallographic study had 
not been completed when the calculations were done. Now that 
the x-ray work has been concluded, we wish to report both the 
calculated and experimental structures of the \,8-peri-tert-
butylnaphthalene system, specifically, the tetra-rert-butyl-
naphthalene 3. 

CH,Ph 

Experimental Section 

X-Ray Analysis. The crystals are triclinic with a = 9.886 (3), b = 
10.437 (3), c = 12.125 (4) A, a = 82.48 (3), 0 = 85.63 (3), 7 = 71.32 

(3)°, V= 1170 A3. The space group is Pl with two molecules per cell, 
Dc = 0.999 g cm - ' , n (Cu Ka radiation) = 4.11 cm-1. 

Intensity data were collected on an Enraf-Nonius CAD 4 diffrac-
tometer, using mojiochromatized Cu Ka radiation, up to a limit of 8 
= 75°. The a; - 20 scanning mode was used and reflections were ac­
cepted as observed on the criterion 1/al > 3. Complete data were 
collected from two separate crystals, a small one approximately cube 
shaped with edge 0.2 mm, and a much larger crystal, roughly spherical 
and with mean diameter 0.67 mm. A total of 4452 independent re­
flections, or 89% of those possible, was accepted. Initial work was done 
using the large crystal data, but after structure solution and isotropic 
refinement, the two sets were combined by a least-squares fit of the 
scales, at the same time subtracting out the differentia! spherical 
absorption between the two crystals. Some extinction was evident in 
the low angle data from the large crystal. Therefore data from the 
small crystal only were used for the range sin B/X < 0.325 A - 1 . This 
reduced the data to 4027 reflections giving a data/parameter ratio 
of 10.2 in the final refinement. Data reduction was carried out via 
NRC program 02.6 

The E statistics favored a centrosymmetric structure and this was 
strengthened by the results of the ORNL search program ORTRAN ? 
A 12-atom moiety consisting of the naphthalene ring and the two 
presumably coplanar first substituent atoms in the 3,6 positions was 
used and only one independent orientation was found. In order to 
determine the translation, this fragment was placed in an arbitrary 
position of the space group Pl and atoms added in from successive 
electron density maps (NRC program 088) until this molecule was 
complete. The second molecule then appeared related by a center of 
symmetry to the first. Coordinates were then transformed to this 
center as origin and refinement carried out in the space group Pl. 
Full-matrix least-squares refinement of the carbon atom parameters 
was carried out on a CDC 6600 computer using the ORNL program 
ORXFLS3.9 Two cycles with isotropic thermal parameters reduced R 
to 0.158, and two subsequent cycles using anisotropic thermal pa­
rameters gave an R of 0.096. The hydrogen atoms were then located 
using a modified FORDAP (BNL)10 program. Subsequent refinement 
(anisotropic carbon atoms, isqtropic hydrogen atoms) gave a final R 
value 0.057 and wR of 0.058 for all observed reflections. The weighting 
scheme used was based on the counting statistics and the function 
minimized in least-squares refinement was Iw(F0 — KFC)2. The form 
factors used are those given in the International Tables.1' The ob­
served and calculated structure factors are found in Table I (microfilm 
edition). The structural parameters for all atoms are given in Table 
II. Bond distances and bond angles are found in Table III. 

Molecular Mechanics Calculations. The conclusions here were 
arrived at simultaneously with and independently from the x-ray work. 
The previously described force field (MMPI-1973) was used.3b-5 
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